Artificial Evolution for the Optimization of Lithographic Process Conditions

Document Type
Doctoral Thesis
Issue Date
Issue Year
Fühner, Tim

Miniaturization is a driving force both for the performance and for cost reductions of semiconductor devices. It is therefore carried on at an enormous pace. Gordon Moore proposed and later refined an estimation stating that the minimization of costs would lead to a doubling of the density of integrated circuits every two years. And in fact, this time scale---known as Moore's law---is still aspired at by the major players in the industry. Photolithography, one of the key process steps, has to keep up with this pace. In the past, the introduction of new technologies, including a smaller wavelength of the illumination system or higher numerical apertures (NA) of the projector, has led to a relatively straightforward downscaling approach. Today, optical lithography is confined to argon fluoride excimer lasers with a wavelength of 193 nanometers and an NA of 1.35. The introduction of next generation lithography approaches such as extreme ultraviolet lithography have been delayed and will not be applicable until several years from now. Further scaling hence leads to dramatically decreases process margins since patterns with dimensions of only a fraction of the wavelength have to be lithographically created.
In this work, computational methods are devised that are suited to drastically improve process conditions and hence to push resolution beyond former limitations. The lithographic process can be broadly grouped into the stepper components: the illumination system, the photomask, the projection system and the wafer stack. As shown in this dissertation, each element exhibits a number of parameters that can be subjected to optimization. To actually enhance resolution, however, a rigorous simulation and computation regime has to be established. The individual ingredients are discussed in detail in this thesis. Accordingly, the models required to describe the lithography process are introduced and discussed. It is shown that the numerical and algorithmic implementation can be regarded as a compromise between exactness and computation time. Both are critical to obtain predictive, yet feasible approaches. Another complication is the multi-scale and multi-physics nature of the first principle process models. Although it is sometimes possible to derive individual optimization-tailored, reduced models, such an approach is often prohibitive for a concise co-optimization of multiple aspects. In this work, we thus examine an approach that allows for a direct integration of first principle models. We investigate the use of evolutionary algorithms (EAs) for that purpose. These types of algorithms can be characterized as flexible optimization approaches that mimic evolutionary mechanisms such as selection, recombination and mutation. Many variants of related techniques exist, of which a number are considered in this dissertation. One chapter of this thesis is dedicated to the discussion of different representations and genetic operators, including motivations of the choices made for the following studies. The lithographic process is characterized not only by a large number of parameters but can also be evaluated by a wide range of criteria, some of which may be conflicting or incommensurable---such as figures of merits like performance and manufacturability. We therefore apply a multi-objective genetic algorithm (GA) that is specifically tailored to identifying ideal compromise solutions. The characteristics of multi-objective optimization, especially when performed with evolutionary algorithms, are discussed in this thesis.
There is no such thing as a universal optimizer. EAs, for example, can be considered highly flexible, but they fail to intensively exploit local information. In an attempt to get the best of both worlds, we combine evolutionary with local search routines. We thoroughly discuss our approach to these hybrid techniques and present a number of benchmark tests that demonstrate their successful applications. The majority of optimization problems in lithography are characterized by computationally expensive fitness evaluations. The reduction of the number of candidate solutions is therefore critical to maintain a feasible optimization procedure. To this end, we devised a function approximation approach based on an artificial neural network. Specifically, the GA population constitutes the training pattern for the network. The resulted output is the approximated fitness function. While the global search using the GA is still conducted on the exact search space, the local search is carried out on this approximation, leading to a much reduced runtime. The efficiency and feasibility of this approach is demonstrated by a number of benchmark tests. The algorithms, frameworks and programs developed in the scope of this work are deployed as software modules that are available through the computational lithography environment Dr.LiTHO of the Fraunhofer IISB. The general software structure is briefly discussed. In order to achieve feasible optimization runtimes, rigorous distribution and parallelization techniques need to be employed. For this dissertation, a number of different approaches are devised and discussed in this thesis. A variety of application examples demonstrate the benefits of the devised methods. In a first set of examples, source/mask optimization problems are formulated and solved. In contrast to related work, which is mainly aimed at developing models that are specifically tailored to the underlying optimization routines, the direct approach proposed here is capable of directly employing models that are typically used in lithography simulation. A multitude of results using different problem representations is presented. Additional model options including mask topography effects are demonstrated. It is shown that the approach is not restricted to simplistic aerial image-based evaluations but is able to take the process windows and thin-film effects into account. Moreover, an extension to future resolution enhancement techniques, for example, constructively using projector aberrations, is also demonstrated. In another example series, three-dimensional mask optimizations are performed. There, the topography including the materials of the photomask absorber are subjected to optimization. Drastically improved configurations compared to both standard optical and EUV absorbers under various illumination conditions are obtained. In order to cover all aspects of the lithography process, the last section of this thesis is devoted to the optimization of the wafer stack. As an example, the anti-reflective coating applied at the bottom of the resist to reduce standing waves in the resist profile is optimized. Different configurations including single and bi-layer coating systems are examined and optimized for, especially for double patterning applications. Significant improvements in comparison to standard stacks are shown and discussed. The thesis finally concludes with a discussion on the different optimization strategies and the optimization and simulation infrastructure developed for this work. Advantages and challenges of the methodology are highlighted and future directions and potentials are demonstrated.


Miniaturisierung ist sowohl für die Leistungssteigerung als auch für die Kostensenkung von Halbleiterbauelementen von großer Bedeutung und wird daher mit einer enorm hohen Geschwindigkeit betrieben. Gordon Moore leitete daraus eine Schätzung ab, die besagt, dass die Hersteller gezwungen seien, etwa alle zwei Jahre die Dichte der integrierten Schaltungen zu verdoppeln. Und tatsächlich verfolgen die Hauptakteure der Industrie dieses Ziel -- bekannt als Moore's Law -- noch heute. Photolithographie, einer der wichtigsten Prozessschritte, hat sich diesem Ziel unterzuordnen. In der Vergangenheit stellte die Einführung neuer Technologiestufen, einschließlich kleinerer Wellenlängen der Beleuchtungssysteme oder höhere numerische Aperturen (NA) der Projektionssysteme, einen relativ einfachen Ansatz dar, Schaltungsstrukturen zu verkleinern. Heute allerdings muss sich die optische Lithographie auf den Einsatz von Argon-basierten Excimer-Laser mit einer Wellenlänge von 193 Nanometer und einer NA von 1,35 beschränken. Die Einführung neuer Lithographie-Generationen, beispielsweiser unter Ausnutzung extrem ultravioletten (EUV) Lichtes, verzögert sich, so dass mit ihr erst in mehreren Jahren zu rechnen ist. Eine weitere Verkleinerung der Bauelemente führt so zu einer deutlichen Verschärfung der Anforderungen an den lithographischen Prozess, da Strukturen mit Abmessungen eines Bruchteiles der zur Verfügung stehenden Wellenlänge abgebildet werden müssen. In dieser Arbeit werden deshalb numerische Methoden entwickelt, die geeignet sind, Prozessbedingungen signifikant zu verbessern und damit Auflösungen jenseits vorheriger Beschränkungen zu erzielen. Der Lithographieprozess kann in folgende Komponenten unterteilt werden: das Beleuchtungssystem, die Photomaske, das Projektionssystem und das Schichtsystem auf der Halbleiterscheibe. Wie in dieser Dissertation gezeigt wird, weist jede dieser Komponenten eine große Anzahl optimierbarer Parameter auf. Um tatsächlich eine Verbesserung der Auflösung zu erzielen, ist jedoch der Einsatz umfassender Simulationswerkzeuge unabdingbar. Deren einzelne Bestandteile werden in dieser Arbeit erörtert. So werden die benötigten Modelle, die den Lithographieprozess beschreiben, vorgestellt und diskutiert. Es wird gezeigt, dass die numerische und algorithmische Umsetzung aus einem Kompromiss zwischen Genauigkeit und Rechenzeit besteht. Beide Kriterien sind entscheidend bei der Entwicklung eines prädiktiven und praktikablen Ansatzes. Eine weitere Komplikation ergibt sich aus der Multi-Skalen- und Multi-Physik-Eigenschaft prädiktiver Prozessmodelle. Obwohl es bisweilen möglich ist, reduzierte Modelle für ein spezielles Optimierungsproblem zu entwickeln, eignet sich ein solches Vorgehen im Allgemeinen nicht für die gleichzeitige Optimierung mehrerer Prozessaspekte. In dieser Arbeit wird daher ein Ansatz untersucht, der die direkte Nutzung exakter Modelle erlaubt. Als Optimierungsverfahren werden dabei evolutionäre Algorithmen (EA) entwickelt und verwendet. EAs bezeichnen probabilistische Verfahren, die evolutionäre Mechanismen wie Selektion, Rekombination und Mutation imitieren und sich durch ein hohes Maß an Flexibilität auszeichnen. Da es zahlreiche EA-Varianten gibt, widmet sich ein Kapitel dieser Arbeit der Diskussion und Untersuchung verschiedener Darstellungsoptionen und genetischer Operatoren. Dabei wird insbesondere die für diese Arbeit getroffene Auswahl motiviert. Der lithographische Prozess umfasst nicht nur eine Vielzahl an Parametern, sondern bedarf auch der Bewertung hinsichtlich verschiedener Kriterien, von denen nicht wenige wechselseitig unvereinbar oder unvergleichbar sind. So sind beispielsweise Herstellbarkeit und Leistungsfähigkeit im Allgemeinen inkommensurabel. Daher wird ein multikriterieller genetischer Algorithmus (GA), der speziell auf die Suche nach Kompromisslösungen zugeschnitten ist, implementiert und untersucht. Die Eigenschaften von Mehrzieloptimierung, insbesondere im Zusammenhang mit evolutionären Algorithmen, werden in dieser Arbeit eingehend diskutiert. Genau so wenig wie andere Optimierer können EAs als universell bezeichnet werden: Sie zeichnen sich zwar durch hohe Flexibilität aus, sind aber anderen Verfahren bei der intensiven Ausnutzung lokaler Informationen oft unterlegen. Eine Kombination evolutionärer und lokaler Suchalgorithmen bietet sich deshalb an. Ein entsprechendes hybrides Verfahren wird in dieser Arbeit entwickelt, und dessen Leistungsfähigkeit wird mit Hilfe einer Reihe von Benchmark-Funktionen demonstriert. Die Mehrzahl lithographischer Optimierungsprobleme ist durch rechenintensive Güteauswertungen charakterisiert. Die Zahl der Auswertungen muss daher auf ein Minimum reduziert werden. Es wird zu dem Zweck ein Ansatz verfolgt, bei dem die Fitnessfunktion durch eine deutlich schneller auszuwertende Ersatzfunktion genähert wird. Dabei kommt ein künstliches neuronales Netz zum Einsatz, das die durch den GA erzeugte Population aus Lösungskandidaten als Trainingsinstanzen nutzt, um so ein Modell der Fitnessfunktion zu erzeugen. Dieses Modell wird dann für eine intensive lokale Suche verwendet, während die globale GA-Suche auf der ursprünglichen, exakten Funktion durchgeführt wird. Die Effizienz und die Machbarkeit dieses Ansatzes wird an einer Reihe von Vergleichstests nachgewiesen. Die für diese Arbeit entwickelten Algorithmen, Frameworks und Programme stehen im Rahmen der Fraunhofer IISB Lithographiesimulationsumgebung Dr.LiTHO als Software-Module zur Verfügung. Der prinzipielle Aufbau der Recheninfrastruktur wird kurz diskutiert, insbesondere im Hinblick auf die entwickelten und verwendeten Verteilungs- und Parallelisierungsverfahren, ohne die praktikable Optimierungsläufe aufgrund der hohen Rechenzeiten nicht möglich wären. Eine Vielzahl von Anwendungsbeispielen zeigt die Vorteile der entwickelten Methoden. In einer Studie werden Beleuchtungsquellen/Photomasken-Optimierungsprobleme formuliert und gelöst. Im Gegensatz zu vergleichbaren Arbeiten, die zumeist auf vereinfachten, effizienten Modellen beruhen, wird hier ein direkter Ansatz verfolgt, der es erlaubt, exakte, in der Lithographiesimulation übliche Modelle zu verwenden. Mehrere Darstellungsvarianten werden vorgestellt und anhand zahlreicher Ergebnisse diskutiert. Die Flexibilität des Ansatzes wird unter anderem durch die Berücksichtigung von Maskentopographieeffekten demonstriert. Es wird ferner gezeigt, dass das Verfahren nicht auf die Auswertung von Luftbildern beschränkt ist, sondern auch andere Komponenten wie Prozessfenster oder Dünnfilmeffekte einbeziehen kann. Weitere Ergebnisse demonstrieren die Erweiterbarkeit des Verfahrens auf zukünftige Techniken zur Verbesserung der Auflösung, zum Beispiel, der Ausnutzung der Projektor-Aberrationskontrolle. Ziel einer weiteren Reihe von Simulationsexperimenten ist die dreidimensionale Maskenoptimierung, in der zusätzlich zur Quellen/Maken-Optimierung auch die Topographie und die Materialeigenschaften der Photomaske optimiert werden. Dabei können deutliche Verbesserungen im Vergleich zu Standardkonfigurationen erzielt werden. Optimierungsergebnisse sowohl für optische als auch für EUV-Lithographie werden präsentiert und diskutiert. Um alle Aspekte des Lithographieprozesses abzudecken, befasst sich der letzte Abschnitt der Arbeit mit dem Schichtsystem auf der Halbleiterscheibe. Als Beispiel wird die antireflektive Beschichtung auf der Unterseite des Photolackes optimiert. Diese Beschichtung wird eingesetzt, um eine Interferenz zwischen einfallendem und rückreflektiertem Licht zu verhindern, die zu stehende Wellen führt. Verschiedene Anordnungen, darunter Einzel- und Zweischichtsysteme, werden untersucht und verbessert. Ziel dieser Studie ist es insbesondere, die Veränderungen des Schichtsystems unter heute häufig verwendeten Mehrfachbelichtungsverfahren exakt zu beschreiben und zu verbessern. Die Dissertation schließt mit einer Diskussion sowohl der verschiedenen Optimierungsstrategien als auch der für diese Arbeit entwickelten Optimierungs- und Simulationsinfrastruktur. Vor- und Nachteile der Methodik werden hervorgehoben und mögliche zukünftige Anwendungen und Erweiterungen vorgestellt.

Zugehörige ORCIDs