Human AZFb deletions cause distinct testicular pathologies depending on their extensions in Yq11 and the Y haplogroup: new cases and review of literature

Language
en
Document Type
Article
Issue Date
2022-01-20
Issue Year
2021
Authors
Vogt, P. H.
Bender, U.
Deibel, B.
Kiesewetter, F.
Zimmer, J.
Strowitzki, T.
Editor
Abstract

Genomic AZFb deletions in Yq11 coined “classical” (i.e. length of Y DNA deletion: 6.23 Mb) are associated with meiotic arrest (MA) of patient spermatogenesis, i.e., absence of any postmeiotic germ cells. These AZFb deletions are caused by non-allelic homologous recombination (NAHR) events between identical sequence blocks located in the proximal arm of the P5 palindrome and within P1.2, a 92 kb long sequence block located in the P1 palindrome structure of AZFc in Yq11. This large genomic Y region includes deletion of 6 protein encoding Y genes, EIFA1Y, HSFY, PRY, RBMY1, RPS4Y, SMCY. Additionally, one copy of CDY2 and XKRY located in the proximal P5 palindrome and one copy of BPY1, two copies of DAZ located in the P2 palindrome, and one copy of CDY1 located proximal to P1.2 are included within this AZFb microdeletion. It overlaps thus distally along 2.3 Mb with the proximal part of the genomic AZFc deletion. However, AZFb deletions have been also reported with distinct break sites in the proximal and/or distal AZFb breakpoint intervals on the Y chromosome of infertile men. These so called “non-classical” AZFb deletions are associated with variable testicular pathologies, including meiotic arrest, cryptozoospermia, severe oligozoospermia, or oligoasthenoteratozoospermia (OAT syndrome), respectively. This raised the question whether there are any specific length(s) of the AZFb deletion interval along Yq11 required to cause meiotic arrest of the patient’s spermatogenesis, respectively, whether there is any single AZFb Y gene deletion also able to cause this “classical” AZFb testicular pathology? Review of the literature and more cases with “classical” and “non-classical” AZFb deletions analysed in our lab since the last 20 years suggests that the composition of the genomic Y sequence in AZFb is variable in men with distinct Y haplogroups especially in the distal AZFb region overlapping with the proximal AZFc deletion interval and that its extension can be “polymorphic” in the P3 palindrome. That means this AZFb subinterval can be rearranged or deleted also on the Y chromosome of fertile men. Any AZFb deletion observed in infertile men with azoospermia should therefore be confirmed as “de novo” mutation event, i.e., not present on the Y chromosome of the patient’s father or fertile brother before it is considered as causative agent for man’s infertility. Moreover, its molecular length in Yq11 should be comparable to that of the “classical” AZFb deletion, before meiotic arrest is prognosed as the patient’s testicular pathology.

Journal Title
Cell & Bioscience
Volume
11
Citation
Cell & Bioscience 11 (2021): 60. <https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-021-00551-2>
Zugehörige ORCIDs