Rewiring of neuronal networks during synaptic silencing

Language
en
Document Type
Article
Issue Date
2018-03-15
Issue Year
2017
Authors
Wrosch, Jana Katharina
von Einem, Vicky
Breininger, Katharina
Dahlmanns, Marc
Maier, Andreas
Kornhuber, Johannes
Groemer, Teja Wolfgang
Editor
Abstract

Analyzing the connectivity of neuronal networks, based on functional brain imaging data, has yielded new insight into brain circuitry, bringing functional and effective networks into the focus of interest for understanding complex neurological and psychiatric disorders. However, the analysis of network changes, based on the activity of individual neurons, is hindered by the lack of suitable meaningful and reproducible methodologies. Here, we used calcium imaging, statistical spike time analysis and a powerful classification model to reconstruct effective networks of primary rat hippocampal neurons in vitro. This method enables the calculation of network parameters, such as propagation probability, path length, and clustering behavior through the measurement of synaptic activity at the single-cell level, thus providing a fuller understanding of how changes at single synapses translate to an entire population of neurons. We demonstrate that our methodology can detect the known effects of drug-induced neuronal inactivity and can be used to investigate the extensive rewiring processes affecting population-wide connectivity patterns after periods of induced neuronal inactivity.

Journal Title
Scientific Reports
Volume
7
Citation
Scientific Reports 7 (2017). <https://www.nature.com/articles/s41598-017-11729-5>
Zugehörige ORCIDs