Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands

dc.contributor.authorDengler, Jürgen
dc.contributor.authorMatthews, Thomas J.
dc.contributor.authorSteinbauer, Manuel J.
dc.contributor.authorWolfrum, Sebastian
dc.contributor.authorBoch, Steffen
dc.contributor.authorChiarucci, Alessandro
dc.contributor.authorConradi, Timo
dc.contributor.authorDembicz, Iwona
dc.contributor.authorMarcenò, Corrado
dc.contributor.authorGarcía‐Mijangos, Itziar
dc.contributor.authorNowak, Arkadiusz
dc.contributor.authorStorch, David
dc.contributor.authorUlrich, Werner
dc.contributor.authorCampos, Juan Antonio
dc.contributor.authorCancellieri, Laura
dc.contributor.authorCarboni, Marta
dc.contributor.authorCiaschetti, Giampiero
dc.contributor.authorDe Frenne, Pieter
dc.contributor.authorDolezal, Jiri
dc.contributor.authorDolnik, Christian
dc.contributor.authorEssl, Franz
dc.contributor.authorFantinato, Edy
dc.contributor.authorFilibeck, Goffredo
dc.contributor.authorGrytnes, John‐Arvid
dc.contributor.authorGuarino, Riccardo
dc.contributor.authorGüler, Behlül
dc.contributor.authorJanišová, Monika
dc.contributor.authorKlichowska, Ewelina
dc.contributor.authorKozub, Łukasz
dc.contributor.authorKuzemko, Anna
dc.contributor.authorManthey, Michael
dc.contributor.authorMimet, Anne
dc.contributor.authorNaqinezhad, Alireza
dc.contributor.authorPedersen, Christian
dc.contributor.authorPeet, Robert K.
dc.contributor.authorPellissier, Vincent
dc.contributor.authorPielech, Remigiusz
dc.contributor.authorPotenza, Giovanna
dc.contributor.authorRosati, Leonardo
dc.contributor.authorTerzi, Massimo
dc.contributor.authorValkó, Orsolya
dc.contributor.authorVynokurov, Denys
dc.contributor.authorWhite, Hannah
dc.contributor.authorWinkler, Manuela
dc.contributor.authorBiurrun, Idoia
dc.date.accessioned2020-12-30
dc.date.available2023-10-11T11:32:22Z
dc.date.created2020
dc.date.issued2020-12-30
dc.description.abstractAim Species–area relationships (SARs) are fundamental scaling laws in ecology although their shape is still disputed. At larger areas, power laws best represent SARs. Yet, it remains unclear whether SARs follow other shapes at finer spatial grains in continuous vegetation. We asked which function describes SARs best at small grains and explored how sampling methodology or the environment influence SAR shape. Location Palaearctic grasslands and other non‐forested habitats. Taxa Vascular plants, bryophytes and lichens. Methods We used the GrassPlot database, containing standardized vegetation‐plot data from vascular plants, bryophytes and lichens spanning a wide range of grassland types throughout the Palaearctic and including 2,057 nested‐plot series with at least seven grain sizes ranging from 1 cm2 to 1,024 m2. Using nonlinear regression, we assessed the appropriateness of different SAR functions (power, power quadratic, power breakpoint, logarithmic, Michaelis–Menten). Based on AICc, we tested whether the ranking of functions differed among taxonomic groups, methodological settings, biomes or vegetation types. Results The power function was the most suitable function across the studied taxonomic groups. The superiority of this function increased from lichens to bryophytes to vascular plants to all three taxonomic groups together. The sampling method was highly influential as rooted presence sampling decreased the performance of the power function. By contrast, biome and vegetation type had practically no influence on the superiority of the power law. Main conclusions We conclude that SARs of sessile organisms at smaller spatial grains are best approximated by a power function. This coincides with several other comprehensive studies of SARs at different grain sizes and for different taxa, thus supporting the general appropriateness of the power function for modelling species diversity over a wide range of grain sizes. The poor performance of the Michaelis–Menten function demonstrates that richness within plant communities generally does not approach any saturation, thus calling into question the concept of minimal area.en
dc.format.extent14
dc.identifier.citationJournal of Biogeography 47.1 (2020): S. 72-86. <https://onlinelibrary.wiley.com/doi/full/10.1111/jbi.13697>
dc.identifier.doihttps://doi.org/10.1111/jbi.13697
dc.identifier.opus-id15337
dc.identifier.urihttps://open.fau.de/handle/openfau/15337
dc.identifier.urnurn:nbn:de:bvb:29-opus4-153378
dc.language.isoen
dc.publisherJohn Wiley & Sons Ltd
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.de
dc.subjectlogarithmic function
dc.subjectMichaelis–Menten function
dc.subjectminimal area
dc.subjectnested‐plot sampling
dc.subjectnonlinear regression
dc.subjectPalaearctic grassland
dc.subjectplant biodiversity
dc.subjectpower law
dc.subjectscaling law
dc.subjectspecies–area relationship (SAR)
dc.subject.ddcDDC Classification::5 Naturwissenschaften und Mathematik :: 57 Biowissenschaften; Biologie :: 570 Biowissenschaften; Biologie
dc.titleSpecies–area relationships in continuous vegetation: Evidence from Palaearctic grasslandsen
dc.typearticle
dcterms.publisherFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
local.date.prevpublished2020-01-26
local.document.pageend86
local.document.pagestart72
local.journal.issue1
local.journal.titleJournal of Biogeography
local.journal.volume47
local.sendToDnbfree*
local.subject.fakultaetNaturwissenschaftliche Fakultät
local.subject.importimport
local.subject.sammlungUniversität Erlangen-Nürnberg / Eingespielte Open Access Artikel / Eingespielte Open Access Artikel 2020
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
15337_JBI_JBI13697.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format
Description: